47.1. Pliocene Biostratigraphy and Chronostratigraphy

M. B. Cita, Institute of Paleontology, University of Milano, Milano, Italy

INTRODUCTION

Pliocene sediments have been recovered in forty-two of the more than two hundred cores recovered during Leg 13 of the Deep Sea Drilling Project in the eastern North Atlantic and Mediterranean Sea. Fossiliferous Pliocene sediments were found at Sites 120 (Gorging Bank), 121 (Alboran Basin), 122 and 123 (Valencia Trough), 124 (Balearic Rise), 127 (Hellenic Trench), 129 (Strabo Trench and Mountains), and 134 (Balearic Abyssal Plain). However, these sites were not continuously cored and the cored intervals were often widely separated. In some cases the material is allochthonous.

The best sections of the Pliocene were those continuously cored at Site 132 in the Tyrrenhian Basin and Site 125 in the Ionian Basin. In fact, at the latter site, the Pliocene interval was cored twice.

In the sedimentary sequence of Sites 132 and 125 the Pliocene is represented by highly calcareous deep-sea pelagic ooze with a low and constant rate of sedimentation. Planktonic foraminifera are by far the most abundant constituent of the sand-sized fraction of the sediment. Such material is ideally suited for biostratigraphic investigations. The thickness of the Pliocene section is 118 meters at Site 132, where the core recovery exceeds 86 per cent and is about 50 meters at Site 125 where the core recovery is unfortunately considerably lower, especially in the Lower Pliocene.

The planktonic foraminiferal zonation proposed here is new. To avoid duplication, reference is made to Chapter 40, Part II, point 10, for a discussion of its background and of the criteria used for the selection of the various zonal markers.

The zonation here proposed is fairly close to those recently defined for the Pliocene of Italy (Bertolino et al., 1968), for the Pliocene of Greece (Bizon, 1967), for the Pliocene of Italy and other Mediterranean regions (Cati et al., 1968) and can be correlated with them (see further below). The most important difference is that in the zonation here proposed for the deep-sea Mediterranean sediments we do not use as zonal markers either Globorotalia aemiliana (or G. hirsuta aemiliana, or G. crassaformis aemiliana or G. crotonensis), or G. crassaformis. Both taxa have been recorded in the DSDP cores, but their occurrence, especially that of G. crassaformis cum var., appears strongly controlled by some ecological factors (see range charts in Chapters 7 and 13).

Globorotalia crassaformis is a mesopelagic species, living in the present sea and known in fossil sediments as old as early Pliocene (Miocene according to Blow, 1969).

The frequency curve of G. crassaformis (group), based on thirty samples investigated from the Pliocene section continuously cored at Site 125, does not show a correlation with the inferred climatic curve based on the occurrence of a restricted number of epipelagic, temperature-sensitive species of Globigerinoides, whose distribution in the present seas is limited to the tropical or subtropical areas (see Cita and Ciaranfi, 1971, and Chapter 47.3). Therefore, the factor which controls the very irregular abundance of G. crassaformis is not the temperature of superficial waters in the photic zone, but possibly changes in the structure of the permanent thermocline, or other ecological factors.

Although ten months have been dedicated to the investigation of the Pliocene sections under discussion, the present study is still preliminary in some aspects. Shortage of space and time have prevented a thorough documentation of the foraminiferal faunas.

The taxonomy of some groups, including the Globorotalia crassaformis group, is provisional. No taxonomical notes will be included here, with the exception of the Globorotalia marginata group, on which statistically oriented investigations have been done (see Section on statistical investigations on this group). We had to describe two new taxa, since one of them has been used as zonal marker. Two more new taxa recorded in the Mediterranean DSDP cores will be published elsewhere, as will further paleontological investigations.

In the present chapter only the aspects of Pliocene foraminiferal biostratigraphy considered of interest for the project will be examined.
THE MIocene/PLIOCENE BOUNDARY

This boundary can be recognized within a single core section at Sites 134 (Balearic Abyssal Plain), 132 (Tyrrhenian Rise), and 125A (Mediterranean Ridge in the Ionian Basin). In fact, the contact is so sharp that one can put a fingernail on the visible disconformity that it represents.\(^1\)

Figures 1, 2 and 3 illustrate Sections 134-7-5, 132-21-2 and 125A-6-1 where the boundary is present; the figures are also accompanied by some biostratigraphical notes concerning the intervals investigated paleontologically.

The Miocene/Pliocene boundary coincides with the sharp sedimentary break that occurs between the evaporitic sequence below and the pelagic sediments above.

At two more sites, namely, Site 122 in the Valencia Trough and Site 124 on the Balearic Rise, south of Mallorca, the boundary is not present within a single core. It occurs somewhere in the uncored interval between two successive cores which are so different both in lithology and in fossil content, and yet so close to one another, that we can consider also in these cases that the boundary represents a dramatic change in environmental conditions.

The Pliocene pelagic oozes which overlie the Miocene evaporites correspond both in lithology and fossil content to the “Trubi” formation of Sicily, and the evaporite-pelagicite contact corresponds to what may be seen in Sicily, where the “Trubi” marls directly overlie the “formazione gesso-solfificata.”\(^2\)

The high-resolution biostratigraphy developed for the Pliocene indicates that the pelagic sediment immediately overlying the late Miocene (Messinian) evaporites is not of the same age in the three different basins.

The basal layer of Pliocene ooze at Site 132 in the Tyrrhenian Basin belongs to the Sphaeroidinellopsis Acmezone. The basal layer at Site 134 in the Balearic Basin belongs to the Globorotalia margaritae margaritae Lineage-zone, and that at Site 125A in the Ionian Basin belongs to the Globorotalia margaritae evoluta Lineage-zone.

This observation cannot be easily explained, and was of concern to the shipboard scientists, since the deluge model which fits so much of the other data and which is attractive as a working hypothesis (see Chapter 43) would lead us to conclude that pelagic ooze should have started to accumulate in each of the basins simultaneously.

Two explanations, which are difficult to evaluate, can be offered to explain how the first ooze which was permanently preserved above the evaporites can be diachronous.

1) Vigorous submarine erosion in the early Pliocene could have prevented deposition, or could have eroded away previous loose pelagic deposits down to a firm substratum (e.g., to lithified dolomite in Core 6 of Site 125A; see Chapter 6 for documentation of just such a deep-water erosion/nondeposition at Site 124).

2) Subsequent tectonic movements on the sea bed caused by volume change, solution, or cavern collapse in the underlying evaporite could lead to slumping or fault displacement.

In other words, although the event (Pliocene transgression or flood of the desiccated Mediterranean basin) was isochronous everywhere within the basin, the oldest sediments preserved might not necessarily be isochronous at all locations, due to more or less local factors.

As base of the Pliocene we therefore take the base of the section at which all the foraminiferal zones and all the nannofossil zones are present, namely Core DSDP 132-21-2 (see text Figure 2).

THE PLIOCENE/PLEISTOCENE BOUNDARY

The Pliocene/Pleistocene boundary (Figure 4) was cored at Sites 122 and 123 (Valencia Trough), 134E (Balearic Basin and Sardinia slope, respectively), 132 (Tyrrhenian Rise) and 125 (Mediterranean Ridge in the Ionian Basin). At other sites, particularly Sites 121 (Alboran Basin) and 124 (Balearic Rise), this boundary lies in an uncored interval between two successive cores referable to the Pleistocene and to the Pliocene respectively.

At Sites 122 and 123, the Quaternary sediments represent channel fill; an erosional surface separates them from the underlying Pliocene sediments, with an important gap in sedimentation (see Chapter 40.2, Part II, point 8). A hiatus, with hard-ground, has been recorded also at the Pliocene/Pleistocene boundary at Site 134, at the eastern edge of the Balearic Abyssal Plain (Sidewall Core 1, 134E; see Chapter 40, Plates 2 and 3).

Thus, at all these western Mediterranean sites the biostratigraphic boundary falls at a marked discontinuity. However, at both sites continuously cored from the central (132) and eastern (125) Mediterranean basins the boundary lies in an entirely uninterrupted marine succession of uniform lithology.

The boundary under discussion is defined by the (massive) extinction horizon of Discoaster boweri, a biostratigraphic event which is clearly recognizable in all the Mediterranean drilling sites.

The Pliocene/Pleistocene boundary is much less clear in terms of foraminiferal biostratigraphy (Berggren, 1971). In fact, no extinction horizon or first occurrence can be used as a datum level.

Globigerina pachyderma, used sometimes as marker species in the Mediterranean, occurs below as well as above the extinction horizon of Discoaster boweri. Its ratio of left to right coiling (used as the criterion for recognizing the beginning of the Quaternary by Bertolino et al., 1968; Cati et al., 1968) cannot be used either, since G. pachyderma, as recorded in Mediterranean DSDP cores, is right coiling throughout, with the exception of some of the coldest intervals recorded in the glacial Pleistocene.

The first appearance of Globorotalia truncatulinoides, evolving from G. tosaensis, is considered by Hays and Berggren (1971) to be the most reliable biostratigraphic event for recognizing the Pleo/Pleistocene boundary. However, we could recognize this event only once in our cores, namely in Core 125-4 (Mediterranean Ridge), slightly below the extinction horizon of Discoaster boweri. At the
22-24 cm Sand-size fraction abundant and entirely organogenic. Planktonic foraminifera are well developed and diversified. Over ten species are recorded, including Globorotalia margaritae margaritae, G. margaritae primitiva, Orbulina universa, Globigerinoides obliquus extremus, G. quadrilobatus (abundant). Benthic foraminifera are extremely rare and indicate deep bathimetric conditions. Single specimens of Uvigerina rutilia and Lagena sp. Also rare ostracod valves.

123-125 cm Sand-size fraction abundant; entirely consisting of shells of planktonic foraminifera, plus some organic matter, rare echinoid spines and ostracod valves. Species include Globorotalia margaritae margaritae, Sphaeroidinellopsis seminulina, Globigerinoides obliquus extremus. Pelagic sedimentation. Lower Pliocene, Globorotalia margaritae margaritae Lineage Zone.

132-135 cm Sand-size fraction very small. Planktonic foraminifera rare and partly dwarfed, indicating unfavorable life conditions. Species recorded include Orbulina universa, Globigerinoides obliquus, Globigerina nepenthes, Globigerinoides trilobus; all of them represented by single specimens. Restricted marine sedimentation. Upper Miocene, Globorotalia plesioutumida Zone.

144-145 cm Sand-size fraction very small. Rare planktonic foraminifera, some with pyrite fillings; recorded taxa include Globorotalia merotumida, G. scitula, G. acostaensis.

7,CC Sand-size fraction abundant; mostly consisting of anhydrite fragments, pyrite crystals, quartz, glauconite and other clastics. Planktonic foraminifera (extremely rare) including Globigerina cf. nepenthes, Globorotalia acostaensis, Globigerina bulbosa, Globigerinoides obliquus. Benthic foraminifera present; some with abraded tests.

Figure 1. The Miocene/Pliocene boundary at Site 134 (Balearic Basin). Photograph of Core 134-7-5 and biostratigraphical comments on the samples investigated.
0-2 cm Sand-size fraction abundant; entirely consisting of planktonic foraminiferal shells (mostly broken) and showing evidence of mechanical erosion. Orbulina universa, Sphaeroidinellopsis spp. (most characteristic constituent, abundant), Globigerinoides obliquus extremus. Pelagic sedimentation, Lower Pliocene, Sphaeroidinellopsis Acme Zone.

20-22 cm Sand-size fraction abundant; consisting of aggregated ooze and of planktonic foraminifera. No benthic forms are recorded. The foraminiferal tests are heavily encrusted and buff-colored on the external side (the same color as the sediment) and smooth and clean internally. Recorded taxa include Sphaeroidinellopsis subdehiscens, S. seminulina, Orbulina universa, Globigerinoides obliquus extremus, Globigerina cf. nepenthis, Globorotalia acostaensis. Pelagic sedimentation; suggesting a mechanical transportation of the foraminiferal shells.

40-41 cm Sand-size fraction entirely organogenic; represented by planktonic foraminiferal tests, partly in fragments. The smaller species (as Globigerina microstoma, G. quinqueloba, G. bulbosa, Globorotalia acostaensis, Globigerinita glutinata) appear less fragmented than the larger ones.

80-84 cm Sand-size fraction extremely small and yielding single tests of planktonic foraminifera, including Globorotalia cf. plesirotumida, G. scitula, G. ventriosa. Restricted marine sedimentation. Upper Miocene, Globorotalia plesirotumida Zone.

90-92 cm Sand-size fraction very small; mostly consisting of pyrite crystals, anhydrite, mica flakes. Planktonic foraminifera are small, but fairly common and include Globigerina bulloides, G. bulbosa, G. quinqueloba, Globigerinita glutinata, Cassigerinella (?), Globorotalia plesirotumida (small specimens).

106-108 cm Sand-size fraction extremely small; consisting of pyrite concretions and extremely rare planktonic foraminifera.

21, CC Sand-size fraction small; consisting of quartz, various kinds of clastics, pyrite, mica, iron oxides, etc. The organic content consists of extremely rare planktonic foraminifera, normal in size, including Orbulina universa, Globigerina bulloides, Globorotalia sp. ex gr. G. menardii (one specimen, abraded) and spores of terrestrial plants.

Figure 2. The Miocene/Pliocene boundary at Site 132 (Tyrrenian Basin). Photograph of Core 132-21-2 and biostratigraphical comments on the samples investigated.
31-35 cm Sand-size fraction abundant; entirely consisting of foraminiferal shells. Abundant and well diversified fauna, including Globorotalia margaritae margaritae, G. margaritae evoluta, G. pusticulata, Sphaeroidinellopsis seminulina, S. subdehiscent, Globigerinoides obliquus extremus, etc. Purely pelagic sedimentation. Lower Pliocene, Globorotalia margaritae evoluta Lineage Zone.

102-105 cm Sand-size fraction abundant; pure pelagic sedimentation. Recorded taxa include Sphaeroidinellopsis seminulina, Orbulina universa, Globigerinoides obliquus extremus, Globigerinita glutinata, Globigerina spp. The genus Globorotalia is practically absent.

116-118 cm Sand-size fraction abundant; pure pelagic sedimentation. Fauna as above, without Globorotalia.

120-122 cm Sand-size fraction very small; almost entirely consisting of foraminiferal shells, many of which are broken and/or below their usual size. Organic matter. Fauna mostly consisting of Globigerina and Globigerinoides; not really age-diagnostic.

139-141 cm Sand-size fraction very large; mostly consisting of dolomite and pyrite. No fossils. Restricted marine conditions. Upper Miocene by correlation.

1,CC Sand-size fraction very large; mostly consisting of dolomite, anhydrite (?), organic matter, and spores of terrestrial plants(1).

In the shipboard report, a foraminiferal fauna including planktonic forms indicating a Globorotalia margaritae Zone age, and shallow-water benthic forams, was recorded from the Core Catcher of 125A-6. This finding of planktonic species with shallow-water benthics was puzzling, since at Sites 134 and 132 the topmost Miocene marls were devoid of normal pelagic faunas. It was suspected that possibly the planktonics were recovered in the core catcher by downhole contamination, since the overlying pelagic sequence had to pass through the fingers of the catcher before the Miocene was penetrated. To verify this suspicion, a new sample was taken from an undisturbed, homogeneous piece of dark sediment, characteristic of the dominant color of the core catcher sample. This sediment turned out to be devoid of foraminifera altogether, though it also contains the same dolomite, anhydrite(?) and organic matter as the first shipboard sample. For a description and discussion of the shallow-water faunas, see Chapter 7.

Figure 3. The Miocene/Pliocene boundary at Site 125A (Ionian Basin). Photograph of Core 125A-6-1 and biostratigraphical comments on the samples investigated.
Figure 4. Pliocene boundaries, foraminiferal zones and biostratigraphic correlations in the Balearic, Tyrrhenian and Ionian basins.
remaining sites, *G. truncatulinoides* appears much higher in the succession, and *G. tosaensis* is extremely rare or absent.

This demonstrates that both species are probably ecologically controlled and cannot be used as reliable zonal markers in the Mediterranean.

The almost perfect coincidence between the *Globorotalia truncatulinoides* datum and the Discoaster extinction datum in DSDP Core 125-4, however, allows us to check the reliability of the latter datum in order to identify the Pliocene/Pleistocene boundary in the Mediterranean.

Hyalinea baltica, the first occurrence of which in the Le Castella Section, Calabria, has been taken as marker point for the Plio/Pleistocene boundary (INQUA Congress, 1965). It was found only at two of the Mediterranean sites (121 and 122). At the latter, it is surely displaced in a channel fill deposit; in the former, our shallowest drilling site, it is possibly in place.

H. baltica was never recorded in the 220 samples from the Tyrrhenian Basin, nor in the 185 samples from the Ionian Basin, which were investigated in detail from continuously cored successions (see Chapter 46). Obviously, this benthic species, which lives in the Mediterranean at depths ranging from 60 to 1000 meters, cannot be used as a biostratigraphic indicator in pelagic deep-sea deposits.

STATISTICAL INVESTIGATIONS ON THE GLOBOROTALIA MARGARITAE GROUP

Introduction

All that lies between the Discoaster extinction level and the uppermost layer of the evaporites is referred to as the Pliocene. In the cores recovered from this interval, we noted an important biostratigraphic event, namely, the extinction horizon of *Globorotalia margaritae*.

Extinction levels are optimal in the biostratigraphy of cored sequences if they can be shown independently to be isochronous. This is so because drilling techniques can mix sediments downhole, thus potentially confusing first occurrences, but drilling techniques cannot mix the sediment upwards. Secondly, Hays et al. (1969) have demonstrated that the extinction level of *Globorotalia margaritae* occurs at the Gilbert/Gauss paleomagnetic boundary (3.32 my) in piston cores from the Pacific and Indian oceans.

Chapter 47.2 will show that the *Globorotalia margaritae* extinction level at Site 132 also occurs at this boundary. Because the *Globorotalia margaritae* extinction level lies about midway between the Discoaster *broweri* extinction level and the evaporites, we have, in the hope of obtaining other biostratigraphic criteria to further subdivide the lower part of the Pliocene, examined the *Globorotalia margaritae* group in all of our cores.

One such anticipated criterion was a distinct morphologic evolution in the *Globorotalia margaritae* group which could be considered and demonstrated to be isochronous. *Globorotalia margaritae* is the most conspicuous constituent of the foraminiferal assemblages of the Lower Pliocene of deep-sea Mediterranean deposits. It is the only keeled *Globorotalia* and is present in a majority of the samples, often with hundreds of specimens that show considerable morphological variation.

From the very beginning of our investigations on board the Glomar Challenger, we observed a certain evolution in the populations referable to *Globorotalia margaritae* (broadly interpreted). Where we had samples from more than one core from the same drilling site which could be assigned to the *Globorotalia margaritae* Zone, the most obvious evolutionary trends that we could perceive were an increase in size and the acquisition of a subcircular instead of an elongate equatorial outline, resulting from a different (slower) growth pattern. Other, less obvious changes apparently concern the height of the spire and the peripheral characters.

At Site 132, *Globorotalia margaritae* has a total stratigraphic range of 50 meters. This section was therefore ideally suited to statistically oriented foraminifer investigations.

Stratigraphic Importance of Globorotalia margaritae

Globorotalia margaritae Bolli and Bermudez was originally described from the Miocene of Venezuela. The Miocene age was based on the molluscan fauna of the Cubagua Formation (Cubagua Island, Peninsula Araya, Venezuela). In the world-wide zonation of Bolli (1966a) the *Globorotalia margaritae* Zone, defined as a total-range zone, is entirely confined to the Miocene, being the penultimate Miocene biozone. However, the age determination for the Cubagua formation should be considered doubtful on the basis of present knowledge.

The type locality of a part of the Pliocene biozonation of Bolli (1966a) is Margarita Island off Venezuela. *G. margaritae* has been subsequently recorded in Java (Bolli, 1966b), in the equatorial Pacific (Parker, 1967), and at many other localities. In the Mediterranean area, where it is apparently more common than in the Caribbean and Gulf of Mexico, this species was often recorded as *Globorotalia hirsuta* (d'Orbigny). At the congress on Mediterranean Neogene Stratigraphy held in Bologna (1967), it became apparent in discussions among micropaleontologists of various schools that *Globorotalia hirsuta* of the Italian workers (see for instance, AGIP Mineraia, 1957; Ruggeri, 1960; Cololongo and Sartoni, 1967; Faccarino, 1967; Barbieri, 1967; d'Onofrio, 1968; Dondi and Papetti, 1968) is identical to *Globorotalia margaritae* Bolli and Bermudez (1965).

Globorotalia hirsuta (as interpreted by the Italian workers cited) is considered a typical Lower Pliocene marker. However, it has been at times recorded from pre-Pliocene sediments (see AGIP Mineraia, 1957; Tortonian; d’Onofrio, 1964; Messinian; Dondi and Papetti, 1968 (Tortonian and Messinian)). Cololongo (1970) recorded and illustrated *Globorotalia margaritae* from level 105 of the Messinian neostratotype (“Marne argillose superiories”). The figured specimen apparently may be identified with our *Globorotalia margaritae* primitiva. Having actually seen the locality of level 105 of the neostatotype Messinian, as well as its paleontological content, the author doubts that *Globorotalia margaritae*, as well as the *Cyprideis pannonica* and contains Ammonia beccarii tepida, thus indicating ipholine conditions.*

Sphaeroidinellopsis present in this level, are autochthonous constituents of the assemblage, which is extremely rich in

3 The aforementioned authors pointed out that the pre-Pliocene specimens are rare and smaller than the Pliocene ones.
In the new Pliocene zonation by Bolli (1970), based on DSDP cores from Leg 4 in the Central Atlantic and Caribbean, the *Globorotalia margaritae* Zone is considered to be entirely Pliocene, its lower boundary coinciding with the Miocene/Pliocene boundary. Once again, this age assignment is conventional and not related to any defined stratotype section.

In our new deep-sea Mediterranean zonation, we use a *Globorotalia margaritae* Total-range zone, a kind of super zone to which belong our lower three zones plus an undefined interval of late Miocene age. Because of the quite abnormal ecologic conditions during the late Miocene, the Mediterranean is not a suitable area to study the first evolution of this species.

The extinction of the *Globorotalia margaritae* group, which is extremely abundant and highly evolve, is quite sudden in all the drilling sites and consistently occurs within the latest part of the *Discocaster asymmetricus* Zone. The top of this zone is defined by the extinction horizon of *Ceratolithus tricorniculatus*, according to the zonation by Martini and Worsley (1970). Thus, the extinction horizons of *C. tricorniculatus* and *G. margaritae* nearly coincide, the former being slightly higher than the latter.

Procedures Followed

For the statistical investigation of *Globorotalia margaritae*, one sample from each core of Site 132 belonging to the *Globorotalia margaritae* zones was used: 132-14, CC; 132-15-2, 35 cm; 132-16-3, 35 cm; 132-17-4, 35 cm; 132-18-4, 35 cm; and 132-19-1, 35 cm. The distance between sample levels ranges from 4.5 to 10.5 meters. The corresponding time interval (with a sedimentation rate approaching 2.8 cm/10^3 yr) ranges from 160,000 to about 350,000, averaging 300,000.

From each level we extracted 100 specimens, at random, of *G. margaritae* s.l. The specimens are fairly variable in size but have some significant features in common, including: (a) general shape of the test elongated to subrounded, (b) more or less asymmetrically biconvex test, (c) more or less flattened, (d) fairly rapid growth of the chambers, especially in the last formed whorl, (e) subacute to faintly keeled periphery, (f) thin, uniformly perforated wall, (g) extended hispidity of the surface in the early ontogenetic stages, (h) petaloid chambers, (i) more or less lobulated periphery, (j) small and slightly depressed umbilicus, (k) radial and slightly depressed intercameral sutures on the umbilical side, (l) gently curved and more or less limbed intercameral sutures on the spiral side visible only in the last whorl, (m) slit-like umbilical-extraumbilical aperture, partly covered by a more or less extended lip, and (n) coiling dominantly left (95% of 600 measured specimens). A number of variable characteristics are apparent from this list, yet only a small number can be measured.

A limited number of statistically oriented studies of planktonic foraminifera have been published to date (e.g., Scott, 1968; Gradstein, 1971; Lindenberg, 1969). The studies indicate that it is as yet unclear which parameters of foraminiferal variability are significant from an evolutionary or taxonomical standpoint.

In the present study, the continuous and discontinuous variables measured on the test of *Globorotalia margaritae* are indicated below.

Continuous Variables: (a) equatorial diameter passing through the last formed chamber (A-A' in Figure 5), (b) equatorial diameter perpendicular to A-A' (B-B' in Figure 5), (c) width of the last-formed chamber (C-C' in Figure 5), (d) axial diameter (D-D' in Figure 5). The measurements were made on a binocular microscope, using a magnification of 100X.

Discontinuous Variables: (e) characters concerning the axial periphery. Five frequency classes were distinguished (Figure 6), ranging from a subacute periphery to a keeled periphery with a distinctly imperforate keel on three or more chambers; (f) characters concerning the equatorial periphery. Three frequency classes were distinguished: slightly lobulated, lobulated and strongly lobulated; (g) characters concerning the surface of the three frequency classes: (very hispid, hispid, moderately hispid); (h) number of chambers in the last-formed whorl: four frequency classes (from 4.1/2 to 6 chambers); (i) coiling direction (two frequency classes: left and right).

The elaboration of these measures is in progress and the results will be published later. Figure 6 illustrates the histograms concerning characters (d) and (e) of the preceding list. A distinct change is observed in both of them, especially in the axial diameter, between the populations investigated from Cores 16 and 17; it is in this interval that

Figure 5. Continuous variables, as measured on *Globorotalia margaritae* (for further explanations, see text). A-A' = equatorial diameter (maximum) passing through the last-formed chamber, B-B' = equatorial diameter perpendicular to A-A', C-C' = width of the last-formed chamber, and D-D' = axial diameter.
Figure 6. Histograms showing changes in the axial diameter (left) and in the periphery (right) observed in 100 random specimens of Globorotalia margaritae (group) from six levels investigated at Site 132 (Lower Pliocene of the Tyrrhenian Basin). The interval of each histogram class (axial diameter) is 10 μ. Interval classes concerning the periphery are as follows: (1) subacute periphery, (2) acute periphery, (3) imperforate keel in the last-formed chamber, (4) imperforate keel in the last and penultimate chambers, (5) imperforate keel on three or more chambers.
the author locates the boundary between the two lineage zones based on the evolution of *Globorotalia margaritae*.

It is regrettable that full documentation cannot be presented here, but the limitation of time (and also of space) was such that it was absolutely impractical; it is only possible to present the conclusions here. In fact, three taxa were distinguished by the author within the *Globorotalia margaritae* group, giving them subspecies rank; namely, *G. margaritae primitiva*, *G. margaritae margaritae*, and *G. margaritae evoluta*. They co-occur in the latest part of the range of the group, as in Sample DSDP 132-14, CC, from which come all the specimens illustrated in Plates 1-2, and which represents the type locality for the two new taxa. *G. margaritae evoluta* is common in the upper half of the range of the taxon, to which it is practically limited. Bolli (1970, p. 581) found that “...in the upper part of the *Globorotalia margaritae* Zone of Sites 29 and 31 (Venezuela Basin), they have a tendency to grow larger by adding one or two more chambers.” The specimens illustrated (Plate 8, Figures 4-7) compare well with our *G. margaritae evoluta*. Beckmann (personal communication) found in the eastern North Atlantic (DSDP Leg 14) (always in the later part of the range of *G. margaritae*) a similar large form, with an equatorial periphery less elongated than in the typical form (here named *G. margaritae margaritae*). *G. margaritae primitiva* represents the most primitive type, and is more common in the lower levels.

We used these names in the range charts of the various sites, so we are obliged to describe and figure here the taxa, which otherwise should be invalidated as “nomina nuda.” Further information on these taxa and on their variability will follow this first formal description.

Description of the New Taxa

Globorotalia margaritae evoluta n. subsp.
(Plate 1, Figures 1-7)

Globorotalia margaritae (large-sized specimens) of Bolli, 1970, Plate 8, Figures 4 to 7.

Description: Large and compressed form, almost symmetrically biconvex, with a low trochosire. First coils indistinct, however clearly eccentric.

Equatorial periphery subrounded to slightly elongate, lobulate. Axial periphery acute to keeled in the last whorl. A distinctly imperforate keel is visible on at least two chambers (last-formed and penultimate). Extended hispidity is observed on the early ontogenetic stages. Growth pattern regular, with a slower increase in both the height and the width of the chambers than in *G. margaritae margaritae*. **An abortive (negative) final chamber** is often recorded (see Plate 1, Figures 3 and 5). Chambers petaloid, separated by gently arched intersameral sutures; they are distinctly limbate in the last two or three chambers, then become flush and are generally indistinct at the beginning of the last-formed whorl, which includes 4.5 to 6 chambers (generally 5). Intercameral sutures radial and slightly depressed on the umbilical side, which shows a narrow and shallow umbilicus. Slit-like aperture, umbilical-extraumbilical, with an apertural lip. Wall calcareous, distinctly perforate, surface smooth (in the last two or three chambers of the last-formed whorl) to hispid (in the previous ones) on the spiral side, where the hispidity is even more extended and accentuated, as evidenced by the scanning-electron photomicrographs. Coiling dominantly left.

Dimensions: Equatorial diameter (passing through the last chamber) 0.5-0.6 mm; equatorial diameter perpendicular to the above one, 0.4-0.5 mm; and axial diameter averaging 0.2 mm.

Type locality: DSDP Site 132, Tyrrenhian Basin.
Latitude: 40° 15.70’N
Longitude: 11° 26.47’E
Subbottom depth 122 meters.

Type level: DSDP Core 132-14, CC.

Discussion: *Globorotalia margaritae evoluta* is considered to be phylogenetically derived from *G. margaritae margaritae* in the latest part of its evolution. It differs from the latter by its greater size, less elongated equatorial outline, slower increase in height of the chambers, and more symmetrical axial profile. *Globorotalia margaritae evoluta* also differs from *Globorotalia hirsuta praehirsuta Blow* in its larger size, more rounded outline, less rapid growth of the chamber height, and more distinct keel. Further comparisons with morphologically similar taxa will follow, along with a thorough documentation on the variability of the new taxon.

Globorotalia margaritae primitiva n. subsp.
(Plate 2, Figures 1-3)

Description: Fairly small form, almost symmetrically biconvex, with a low trochosire. Equatorial periphery subrounded to slightly elongate, with a faint lobulation. Axial periphery subacute, never keeled, not even in the last-formed chamber. Growth pattern regular, with a slower increase in both the height and in the width of the chambers than in *G. margaritae margaritae*. Chambers petaloid, separated by gently arched intersameral sutures, which are never limbate, but are flush to indistinct on the spiral side. Intercameral sutures subradial and slightly depressed on the umbilical side. Fairly small and shallow umbilicus; aperture slit-like, extending to the periphery, with a distinct apertural lip. Chamber wall calcareous, distinctly perforate, with an extended superficial hispidity in the early ontogenetic stages. Coiling dominantly left.

Dimensions: Equatorial diameter (passing through the last-formed chamber) 0.3-0.4 mm; equatorial diameter, perpendicular to the above, 0.25-0.35 mm; and axial diameter averaging 0.19 mm.

Type locality: DSDP Site 132, Tyrrenhian Basin.
Latitude: 40° 15.70’N
Longitude: 11° 26.47’E
Subbottom depth 122 meters.

Type level: DSDP Core 132-14, CC.

Discussion: *Globorotalia margaritae primitiva* is considered to be phylogenetically related to *G. margaritae margaritae* with which it co-occurs for most of its range in the Lower Pliocene. It differs from the latter by its smaller size, less elongate equatorial outline, slower increase in size of chambers, more symmetrical axial profile, and complete lack of a distinct keel. In addition, it differs from *Globorotalia praemargaritae* Catalano and Spivieri for having a more elongate test, a more acute axial periphery, a more rapid growth pattern, and left coiling. Further
comparisons with morphologically similar taxa will follow, along with a thorough documentation of the variability of the new taxon.

WHY A NEW ZONATION?

A new zonation is proposed here for a number of reasons which will be discussed before defining the biozones.

1) The climatic evolution of the earth during the latest portion of its history is such that ecologically controlled variations in the planktonic foraminiferous assemblages become more and more important. Therefore, while we can accept the principle of a standard zonation for the Upper Cretaceous, it is practically meaningless to speak of a world-wide zonation for the Pliocene.

2) The crisis of salinity which occurred in the latest part of the Miocene in the Mediterranean area resulted in the extermination of the planktonic fauna living there. According to the model presented in Chapter 43 of this volume, the Pliocene fauna re-immigrated from the Atlantic into the Mediterranean in a quite unusual way. The re-immigration was not only ecologically controlled, but was also controlled by the activity of geostrophic currents, influenced by the morphology of the Gibraltar threshold (see Chapters 36.2 and 40). Therefore, the Mediterranean successions, which are less diverse than the Atlantic ones and in some ways more "provincial," deserve a zonation of their own.

3) A standard zonation for the Mediterranean does not exist. A number of more or less similar zonations have been proposed since 1967, including those of Bizz (1967) for NW Greece; Barbieri (1967) for Northern Apennines (Vernasca-Castellanoquato section); Colalongo and Sartoni (1967) for Northern Apennines; Conato and Follador (1967) for Southern Italy; Colalongo (1968) for Northern Apennines; d’Onofrio (1968) for the Marche, central Italy; Mansou et al. (1969) for Egypt; and Mazza (1971) for Algeria. Some of the zonations presented independently at the Fourth Congress of the Mediterranean Geologic Stratigraphy (CMS) held in Bologna in 1967 have been integrated in a unified zonation (Bertolino et al., 1968).

A comparison of the taxa, and of the range of the taxa, was requested (see Report on Micropaleontology by Cita, 1968) during the aforementioned Congress. This was promoted and actually realized by Hans Bolli, chairman of a meeting held in Bologna (May, 1968), and represented a kind of appendix to the Fourth Congress of the Mediterranean Geologic Stratigraphy (CMS). The meeting resulted in a paper signed by 30 authors (Cita et al., 1968), in which three different zonations were proposed for the Pliocene (Figure 8), since no general consensus could be reached on any one of them.

4) Most of the biostratigraphical subdivisions defined in the cited papers (Figure 8) are assemblage zones or zones of similar taxa. This is especially true of the paper by Bertolino et al. (1968). It includes a definition of the cenozoic zone which is also cited in the glossary attached to Circular No. 36 of the Subcommission on Stratigraphy Classification, IUGS (July, 1971).

Assemblage zones are obviously ecologically controlled and are a very useful tool for subdividing the stratigraphic record of epicontinental sedimentary basins. Most of the sections investigated by Mediterranean researchers are outer shelf deposits, or in some instances inner shelf deposits. Also, subsurface sections (see Donini and Papetti, 1968) represent sedimentation in rapidly subsiding, but certainly not deep basins.

Assemblage zones can hardly be correlated from one basin to another, and their boundaries cannot theoretically be considered isochronous over broad geographic regions.

Because the philosophic background is very different, and since for practical reasons we cannot consider the zonal boundaries as correlatable (in time-stratigraphic correlations), none of the previously defined zonations were used by the author, even in cases where the same zonal marker is used (for example, *Globorotalia margaritae* and *Globorotalia inflata*).

The author always tried to work on ranges instead of assemblages, and in deep-sea pelagic sediments certainly this is possible.

5) Some of the taxa used as zonal markers in the Mediterranean, such as *Globorotalia crassaformis* and *G. aemiliana*, appear to be strongly affected by some ecological factors (see the introduction to this chapter).

Since the assemblage-zones derive their names from these taxa and are defined in their lower boundaries by the first recorded occurrence of the zonal marker, the questions arise: are the correlations based on their first occurrences indeed isochronous, or are they diachronous, and do they only correspond to similar ecological conditions? These questions are critical for the determination of the relative ranges of *Globorotalia margaritae* (group) and *G. crassaformis* (group), as discussed on many occasions with Sartoni, Sprovieri, Crescenti, and others. The problem has been pointed out also by Ruggieri, Catalano and Sprovieri (1968) and is expressed graphically in Figure 7.

While an overlap in the ranges of the two named taxa was not found at Site 132 (Tyrrenian Basin), it was found in the Ionian Basin (Core 125A-54). An overlap of these taxa has also been recorded by Catalano (1969) in Sicily. Moreover, at Anzio, the type locality of *Globorotalia hirsuta praehirsuta* Blow, there is a co-occurrence of *Globorotalia crassaformis* and *G. margaritae*.

Thus, either the extinction horizon of *Globorotalia margaritae* or the first occurrence of *G. crassaformis* is isochronous. Both biostratigraphic events cannot be isochronous, since the taxa are known to co-occur in certain outcrops and be mutually exclusive at others.

Sartoni and his colleagues believe that a correlation based on the first occurrence of *Globorotalia crassaformis* is a time correlation unlike a correlation based on the last occurrence of *G. margaritae*. It is likely that in terrigenous deposits the range of a keeled *Globorotalia* may be restricted due to a paleoenvironmental control, as is the case for the range of *G. menardii* (group) in the Serravallian-Tortonian interval of Northern Italy (Tertiary Basin of Piedmont). However, in purely pelagic sediments, such as those recovered during Leg 13, this assumption is unrealistic.

The evidence given by DSDP cores in the Mediterranean support the isochronity of the extinction horizon of *G. margaritae*, as discussed in Chapter 40 of this volume. The consistency of the relative thickness of the overlying
Figure 7. Range of some species of Globorotalia in the Pliocene of Italy as indicated by various authors, with reference to the range of Globorotalia margaritae. After Ruggieri, Catalano and Sprovieri (1968), slightly modified.

foraminiferal zones in the various drilling sites and the correlation, consistent everywhere with the nanofossil zones as identified by both H. Stradner and D. Bukry, are arguments in favor of this biohorizon being isochronous.

A third argument is now offered by the paleomagnetic investigations carried out on Site 132 (see Chapter 19, this volume). In fact, the Gauss/Gilbert boundary, which coincides in Pacific cores with the extinction horizon of G. margaritae (see Hayes et al., 1969), at Site 132 in Core 14, Section 3, falls within one meter of the last occurrence of G. margaritae.

DEFINITION OF THE BIOZONES

The foraminiferal zones here defined are named according to the internationally agreed-upon rules recently pro-
zones, based on the evolution observed in the *Globorotalia margaritae* group. Three are interval zones, based on a combination of biostratigraphical events. All except the first are based on ranges of taxa, and therefore, according to the previously mentioned rules, no type section is designated. Type sections are designated only for assemblage-zones. However, some cored intervals which are considered characteristic of the various zones will be mentioned as reference sections. The present zonation is suitable for deep-sea sediments of the Mediterranean area.

Sphaeroidinellopsis Acme Zone

This interval is characterized by the abundance of...
representatives of the genus *Sphaeroidinellopsis* (*S. seminulina* and *S. subdehiscent*) and is related to the catastrophic transgression which occurred after the collapse of the dam separating the desiccated Mediterranean basins from the Atlantic (see Chapter 43). The genus *Globorotalia* is represented in this interval by the species *G. acostaensis*, *G. humerosa*, *G. obesa* and *G. scitula*, none of which is common.

The *Sphaeroidinella* datum apparently falls within this zone. In fact, forms showing incipient supplementary apertures on the spiral side are recorded in Core 132-21-1, 60-62 cm (see Plate 6, Figure 5).

Discussion: The lower and upper boundaries of an acme-zone are self-explanatory. Where the acme terminates, the zone terminates. The lower boundary of the zone generally coincides with a disconformity, underlain by deposits of latest Miocene age (*Globorotalia plesiotaumida Zone* [foraminifera], *Discocoaster quinqueramus Zone* [nannofossil]).

A *Sphaeroidinellopsis* Zone (or subzone) is recognized by practically all researchers in the Mediterranean region; it is assigned to either the basal Pliocene (see Bizon, 1967; Mansour et al., 1969; d’Onofrio, 1968; Bertolino et al., 1968; Colalongo, 1968; Dondi and Papetti, 1968) or an interval straddling the Miocene/Pliocene boundary (see Cat1, et al., 1968; Mazzola, 1971). For instance, Blow (1969) recorded the *Sphaeroidinella* datum, defining the Zone N.18/Zone N.19 boundary, in the lower part of the “Trubi” marls in Sicily. Bizon (1967) recorded forms transitional from *Sphaeroidinellopsis* to *Sphaeroidinella* in her *Sphaeroidinellopsis* sp. Zone in Greece. Therefore, a certain consistency appears also from the literature concerning the first evolutionary appearance of *Sphaeroidinella* in the lowermost part of the Pliocene of the Mediterranean area.

The *Sphaeroidinellopsis* Zone corresponds to the lowermost part of the *Ceratolithus truncatus* Zone (nannofossil), as identified by H. Stradner in the Mediterranean cores.

Thickness: The thickness of the *Sphaeroidinellopsis* Zone in the Tyrrhenian Basin (Site 132) is about 10 meters.

Reference sections: DSDP Cores 132-21-1, 132-20 (Sections 3 and 4).

Globorotalia margaritae margaritae Lineage-zone

Interval with the zonal marker from the end of the acme of *Sphaeroidinellopsis* to the statistically demonstrated transition toward more evolute forms of *G. margaritae* (namely, *G. margaritae evoluta*).

Discussion: *G. margaritae margaritae* is usually common to abundant in this interval, and co-occurs with *G. margaritae primitiva*. Also, forms transitional to *G. margaritae evoluta* are occasionally present, especially in the uppermost part of the zone. Other members of the genus *Globorotalia* present include *G. acostaensis*, *G. humerosa*, *G. obesa*, and *G. scitula*. The tests of *Sphaeroidinellopsis* spp. rarely occur in this zone.

6 Or lineage-segment zone according to Hedberg (1971), since it is defined by a given part of the total evolution of the taxon.

The *Globorotalia margaritae margaritae* Lineage-zone consistently corresponds to the upper part of the *Ceratolithus truncatus* Zone, as identified in the Mediterranean cores by H. Stradner.

Thickness: The thickness of the *Globorotalia margaritae margaritae* Lineage-zone in the Tyrrhenian Basin (Site 132) is 25.5 meters.

Reference sections: DSDP Cores 132-18, 132-19, 132-20 (Sections 1 and 2); 134-7 (Sections 1 and 3); 124-4.

Globorotalia margaritae evoluta Lineage-zone

Interval with the zonal marker, from the statistically demonstrated transition of the taxon from *G. margaritae margaritae* upward to the extinction horizon of *Globorotalia margaritae* (group).

Discussion: This interval can easily be identified by the concurrent range of *Globorotalia margaritae* (sensu lato) and *Globorotalia puncticulata*, which usually is abundant throughout. An overlap in the ranges of *Globorotalia margaritae* (group) and of *G. crassaformis* (group) has been recorded in Core 125A-5-4.

The *Globorotalia margaritae evoluta* Lineage-zone consistently corresponds to the *Ceratolithus rugosus* Zone (nanofoossil), as identified by H. Stradner in the Mediterranean cores.

Thickness: The thickness of the *Globorotalia margaritae evoluta* Lineage-zone in the Tyrrhenian Basin (Site 132) is about 27 meters.

Reference Sections: DSDP Cores 132-14, CC, 132-15, 132-16, 125A-5 (Sections 3 and 4), 125A-6-1 (upper part); 134-6; 124-3 (Section 2).

Globorotalia margaritae subdehiscent Interval-zone

Interval with the zonal marker from the extinction horizon of *Globorotalia margaritae* (group) to the extinction horizon of representatives of the genus *Sphaeroindinellopsis*.

Discussion: The zonal marker is never abundant in this interval, nor do we find *Sphaeroindinellopsis seminulina* in abundance. *Globorotalia puncticulata* is usually well represented, and may be common, as was the case at Site 125. However, at Site 132 this species is very rare in this zone. *Globorotalia aemiliana* is represented in this zone at Site 125, but neither it nor *Globorotalia crassaformis* have been recorded in this zone at Site 132. *Globigerinoides obliquus extremus* is present throughout the interval. *Globobaccharina altispirea* is commonly recorded in this zone at Site 125, but is more scarce at Site 132. It becomes extinct near the top of the zone. The extinction horizon of *Sphaeroindinellopsis* spp. consistently falls in the lower part of the *Discocoaster subculus* Zone, as identified by H. Stradner in the Mediterranean cores.

6 Since this zone virtually coincides with the total range of *G. margaritae evoluta*, which disappears along with the other sub-species of *G. margaritae* at the Gilbert/Gauss boundary, the name suggested by Prof. Hedberg is *Globorotalia margaritae evoluta* Taxon-range-Zone.

8 Suggested name: *Globorotalia margaritae exit-to-exit Sphaeroindinellopsis* Interval-zone.
Pleistocene Interval-zone in the Tyrhenian Basin (Site 132) is 16.5 meters.

Reference sections: DSDP Cores 132-12 (Sections 5 and 6), 132-13, 132-14 (Sections 1-3; 125-6 (Section 3); 125-6; 125A, Cores 4 and 5 (Sections 1 and 2); 134-3 and 134-5; 124-3 (Section 1).

Globigerinoides obliquus extremus Interval-zone

This interval with the zonal marker from the extinction horizon of Sphaeroidinellopsis spp. to the massive extinction of the zonal marker.

Discussion: Globigerinoides obliquus extremus is one of the most characteristic constituents of the Pliocene deepsea deposits, and is common to abundant within this zone, as well as below it. The extinction horizon is clearly recognizable at all the sites investigated, and consistently falls in the lower part of the Discoaster brouweri Zone, as identified by H. Stradner. Single teratological specimens of the subspecies may occasionally be recorded from above the extinction horizon. The upper boundary of the zone almost coincides with the first appearance of Globorotalia inflata, which probably evolved from G. punctulata. Transitional forms are found within this zone. An overlap of Globigerinoides obliquus extremus in abundance and of Globorotalia inflata (typical form) was never seen in the DSDP Mediterranean cores.

Globorotalia tosaensis was occasionally recorded in this interval in the Ionian Basin (Holes 125, 125A). The greatest development of the Globorotalia crassaformis group is recorded in the present zone.

Thickness: The thickness of the Globigerinoides obliquus extremus Interval-zone in the Tyrhenian Basin (Site 132) is 18 meters.

Reference sections: DSDP Cores 132-10 (Sections 2 to 6), 132-11, 132-12, 132-13, 132-14 (Sections 1 to 3); 125-5 (Sections 2 to 3), 125-6; 125A, Cores 2 and 3; 124, Core 2 (Section 4).

Globorotalia inflata Interval-zone

Interval with the zonal marker from the extinction horizon of Globigerinoides obliquus extremus to the first appearance of Globorotalia truncatulinoides (total range).

Discussion: Globorotalia inflata is common in this interval, and G. tosaensis is present in some samples. The latter taxon is present nowhere in abundance in the Mediterranean, so that the evolution to G. truncatulinoides cannot be followed step by step. Only at Site 125 were we able to locate this zonal boundary directly (in Core 125-4-5) without referring to the Discoaster brouweri extinction horizon. Since the two biohorizons are virtually identical, in absence of G. truncatulinoides we can use the Discoaster extinction to identify the zonal boundary. When conical Globorotalia are absent, the transition from the latest part of the Pliocene to the earliest part of the Pleistocene is very gradual.

Globorotalia crassaformis is present in various amounts in the lower part of this zone. Globigerina apertura apparently becomes extinct within this zone, as does Globigerinoides bollii. Neither species has ever been recorded in the Pleistocene of the Mediterranean. Globigerina puchyderma is recorded in this zone, being represented by right-coiling specimens.

The Globorotalia inflata Interval-zone consistently corresponds to the latest part of the Discoaster brouweri Zone (nannofossil), as identified by H. Stradner in the Mediterranean cores.

Thickness: The thickness of the Globorotalia inflata Interval-zone is 12.5 meters in the Tyrhenian Basin (Site 132).

Reference sections: DSDP Cores 132-9, 132-10 (Section 1); 125-4 (Section 6); 125A-1.

CORRELATION WITH OTHER ZONATIONS

A correlation with the standard zonation of Bolli (1966a) is not attempted because this zonation, which is excellent for the pre-late Miocene, seems not to be reliable in its uppermost part. Instead of the standard zonation, the new zonation proposed for the Caribbean deepsea deposits is considered here (Bolli, 1970). Two correlations are considered as certain: that based on the first occurrence of Globorotalia truncatulinoides and that based on the extinction of Globorotalia margaritae. They are indicated with continuous lines in Figure 9. Dotted lines indicate the correlations which are probable, but not as certain as the two previously mentioned; namely, the base of the Globorotalia margaritae Zone, which supposedly falls in our Globorotalia plesiostomida Zone of late Miocene age (see previous discussion), and the top of the Globorotalia exilis-G. miocenica Zone, which is indicated as more restricted than our Globorotalia inflata Interval-zone. During a discussion of the new Caribbean zonation by H. Bolli (CMNS Congress, Lyon, 1971), both W.H. Blow and W.A. Berggren argued that G. exilis and G. miocenica extend to the topmost part of the Pliocene, and that even overlaps of G. exilis and G. truncatulinoides are recorded. The personal experience of the writer in the deepsea Pliocene deposits of the Cape Verde DSDP Site 12, however, has not shown this overlap. Also Beckmann (personal communication) found in the central Atlantic a definite, though short, interval between the last occurrences of G. exilis and G. miocenica and the first occurrence of G. truncatulinoides. H. Bolli (personal communication), after studying the material recovered from DSDP Leg 15 has confirmed his previous observations and has found that G. miocenica disappears slightly earlier than G. exilis.

With regard to Blow's (1969) standard zonation, one correlation is considered certain — that based on the first occurrence of Globorotalia truncatulinoides. One more correlation is considered good — that based on the extinction horizon of Sphaeroidinellopsis (new zonation) and the top of Zone N 19. Two more correlations are fairly good: the base of N 21 (first occurrence of Globorotalia tosaensis) at about the middle of our Globigerinoides obliquus extremus Interval-zone, where we sometimes recorded Blow's zonal marker; and the Zone N 18/Zone N 19 boundary, based on the first occurrence of the genus.
<table>
<thead>
<tr>
<th>AGES</th>
<th>PRESENT PAPER MEDITERRANEAN</th>
<th>BOLLI 1970 CARIBBEAN</th>
<th>BLOW 1969 STANDARD</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLEISTOCENE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Globorotalia truncatulinoides Total-range-zone</td>
<td>Globorotalia truncatulinoides</td>
<td>N.22</td>
</tr>
<tr>
<td></td>
<td>Globorotalia inflata Interval-zone</td>
<td>G. truncatulinoides tosaensis</td>
<td>N.21</td>
</tr>
<tr>
<td></td>
<td>Globigerinoides obliquus extremus Interval-zone</td>
<td>Globorotalia exilis/</td>
<td>N.20</td>
</tr>
<tr>
<td></td>
<td>Sphaeroidinellopsis subdehiscens Interval-zone</td>
<td>Globorotalia micoenica</td>
<td></td>
</tr>
<tr>
<td>PLIOCENE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Globorotalia marginata evoluta Lineage-zone</td>
<td>Globorotalia marginata</td>
<td>N.19</td>
</tr>
<tr>
<td></td>
<td>Globorotalia marginata marginata Lineage-zone</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sphaeroidinellopsis Acme-zone</td>
<td></td>
</tr>
<tr>
<td>MIOCENE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Globorotalia pleistotumida Zone</td>
<td>Globorotalia dutertrei</td>
<td>N.18</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>N.17</td>
</tr>
</tbody>
</table>

Figure 9. Proposed correlation of various foraminifer zonations. The Mediterranean zonation is in time-equivalent spacing.

Sphaeroidinella falling in our *Sphaeroidinellopsis* Acme-zone.

Correlations with some of the zonations recently proposed for the Mediterranean are indicated in Figure 10.

The easiest correlations are those of the lowermost zone (*Sphaeroidinellopsis Zone*) and the topmost one (*Globorotalia inflata Zone*) which are common to all of the previous zonations and are considered by everyone to be isochronous. The correlations of the zones lying in between are more or less tentative, because of the different criteria followed in the definition of the zonal boundaries. For instance, all the zonations include a *Globorotalia marginata* (or *G. hirsuta*) Zone; however, we cannot correlate its upper boundary from one zonation to the other one, since in most cases *G. marginata* is absent in the upper part of the zone. Further discussions of this critical argument are presented in a subsequent part of this chapter.

The best documented correlation is with the zonation of Bizon (1967): extinction of *G. marginata* near the middle of the *Globorotalia puncticulata Zone*; extinction of *Sphaeroidinellopsis* near the top of the *Globorotalia punc- ticulata Zone*.

A check of the previously discussed correlations with Boll's (1966a, 1970) and Blow's (1969) zonations via nannoplankton, as investigated in the DSDP Legs 2, 4, 7, should be possible.

In the Pliocene succession at Cape Verde (DSDP Site 12), where the planktonic foraminifera were studied by the writer, two definite extinction horizons were recognized by Gartner (1969): the *Ceratolithus tricorniculatus* extinction horizon and that of *Reticulofenestra pseudoubilica*. The former occurs immediately above Core 12C-4-2, 100 cm. Cita (1971) recognized Datum VII of Saito (first coiling change of *Pulvinatina* from left-coiling (below) to right-coiling (above) immediately above Core DSDP 12C-4-2, 76 cm. Datum VII of Saito occurs just above event “a” of the Gilbert epoch (see Hays et al., 1969). But the *Ceratolithus tricorniculatus* extinction horizon, as recorded in the
Mediterranean cores, consistently corresponds to the topmost part of the range of *Globorotalia margaritae* and almost coincides (slightly higher) with the extinction horizon of *G. margaritae* (Datum VI of Saito). This latter coincides with the Gilbert/Gauss boundary both in the equatorial Pacific (see Hayes et al., 1969) and in the Mediterranean (see Chapter 47.2).

The extinction horizon of *Reticulofenestra pseudoumbilica* occurs at Cape Verde above Core 12C-4-2, 2 cm (Gartner, 1969, Figure 4) which means below Datum V of Saito, as identified by Cita (1971) in Core 12C-4-1, 102 cm, based on the extinction horizon of *Sphaeroidinellopsis* (Mammoth event of the Gauss normal epoch). The relative position of the two biostratigraphic events is consistent with that found in our cores (see Figures 11 and 12). However, in the Mediterranean, *Reticulofenestra pseudoumbilica* is also recorded in the Pleistocene (see observations by H. Stradner in Chapters 7, 9 and 13). At the

Figure 10. Correlation between foraminiferal zones established for the Mediterranean area. The deep-sea new zonation is in time-equivalent spacing (see Chapter 19, this volume).

Figure 11. Correlation between foraminiferal zones and calcareous nanofossil zones, as identified by H. Stradner, at Site 132 (Tyrrenian Basin), in time-equivalent spacing.
Zone N 21 includes the Discostar brouweri Zone, D. pentaradiatus Zone, and the topmost part of the D. surculus Zone. The base of foraminiferal Zone N 21 falls in the upper part of the Discostar surculus Zone; this is consistent with our findings (see Figure 11) and with the correlation of various foraminiferal zonations here proposed (see Figure 9).

All of Zone N 20, as shown in Figure 13, falls in the Discostar surculus (nannofossil) Zone. This is consistent with our findings and with the correlation proposed. There is still doubt, however, as to the exact placement of this zone, because of problems involved in the definition and recognition of its boundaries.

The top of foraminiferal Zone N 19 falls near the base of the Discostar surculus Zone (nannofossil), according to the palaeontologists of DSDP Leg 7. In the Mediterranean, the top of the Sphaeroidine/M. subdehiscens Interval-zone falls near the base of the Discostar surculus Zone (see Figure 11), and the top of Blow's Zone N 19 can be easily correlated with the extinction horizon of Sphaeroidine/M. spp. (see Figure 9). In this case too, a perfect agreement exists between the Mediterranean and the equatorial Pacific.

Foraminiferal Zone N 19 falls in the Ceratolithus tricorniculatus Zone instead of in the C. rugosus Zone (see Figure 13, correlation a').

The above discussion indicates that on the basis of available data, the correlation between foraminiferal zones and nannofossil zones has to be carefully established in one basin, but that it cannot be readily extrapolated to other basins without a critical check.

CORRELATION WITH THE STRATOTYPE SECTIONS OF THE PLIOCENE OF ITALY

Italian stratigraphers commonly use either an informal threefold subdivision of the Pliocene (Figure 14), following Ruggieri et al. (1948), which is now supported by a detailed biostratigraphic zonation; or a subdivision in two stages (Tabianian for the lower Pliocene and Placiænian for the middle-upper Pliocene), in agreement with the definition of the stratotypes proposed at the CMNS Congress (Bologna, 1967).

Reference is made to the recently issued volume on stratotypes of the Neogene stages (1971, edited by Carloni, Marks, Rutsch and Selli), where coordinate information on the original definition, type section, and fossil content of each Mediterranean Neogene stage may be found.

In terms of planktonic foraminifera, the Astenian cannot be stratigraphically located with any degree of accuracy. It yields stratigraphically insignificant species associated with probably reworked ones (see Sampé, Zappi and Caretto, 1968). Moreover, it has been used less and less in the last years and will not be used here.

The Placiænian, as stratotyped by Barbieri (1967) in the Arda Valley, includes perhaps the most classical Pliocene localities of the world and also includes significant planktonic foraminifera which allow long-range correlations. Barbieri (1967, 1971a, 1971b) distinguishes the following zones from bottom to top: Globorotalia crosstauriformis-pectinulata Zone (extending downwards to the upper part of the Tabianian), Globorotalia eotonensis

Figure 12. Correlation between foraminiferal zones and calcareous nanoplankton zones, as identified by D. Bukry (personal communication, 1971), at Site 132 (Tyrrenian Basin), in time-equivalent spacing.

Hellenic Trench Sites 127 and 128, a Reticulofenestra pseudoumbilica peak is recorded in the lower part of the Pseudoemiliana lacunosa Zone.

A correlation with the Caribbean based on the same criteria cannot even be attempted. In fact, Hay (1970) does not record either Ceratolithus tricorniculatus or Reticulofenestra pseudoumbilica in the Venezuela Basin (DSDP Sites 29, 30, 31).

A very interesting correlation is possible with the equatorial Pacific (DSDP Leg 7). The nannofossils there were investigated by Martini and Worsley, using their new standard zonation; the foraminiferal zonation of Bronnimann, following Blow's zonal scheme, is shown in Figure 13.

No problem exists for the N 22/N 21 zonal boundary, correlated with the Pseudoemiliana lacunosa/Discostar brouweri zonal boundary.

<table>
<thead>
<tr>
<th>AGE</th>
<th>FORAMINIFERAL ZONES</th>
<th>NANNOFOSIL ZONES</th>
<th>CODE NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLEISTOCENE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Globorotalia truncatulinoides</td>
<td>Gephyrocapsa coarctata</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Interval-zone</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Reticulofenestra pseudoumbilica</td>
<td>Cyclocoelina manuscripta</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Subzone</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PLIOCENE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Globorotalia inflata</td>
<td>Discostar pentaeta</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Interval-zone</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Discostar tamulis</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Interval-zone</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LOWER</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PLIOCENE</td>
<td>Globorotalia margaritae evoluta</td>
<td>Ceratolithus rugosus</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Lineage-zone</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Discostar pentaeta</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Interval-zone</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LATE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MIocene</td>
<td>Globorotalia pseudoumbilica</td>
<td>Ceratolithus amplificus</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Interval-zone</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1360
47.1. Pliocene Biostratigraphy and Chronostratigraphy

Figure 13. Correlation between calcareous nanoplankton zones and foraminiferal zones, according to Martini (1971), in time-equivalent spacing. \(a = \) correlation proposed by Martini; \(a' = \) correlation here proposed, based on the Mediterranean DSDP cores.

Figure 14. Subdivisions of the Pliocene.

Zone, Globorotalia crassula Zone, and Globorotalia inflata Zone. The Piacenzian, as stratotyped by Barbieri, corresponds to the middle and the upper Pliocene of a number of Italian researchers (see, for instance, Colalongo and Sartoni, 1967; Crescenti, 1971a, *inter alia*), and extends upward to the base of the Calabrian, which is locally represented by sands yielding Artica islandica.

The Tabianian, as stratotyped by Iaccarino (1967) is well defined biostratigraphically in terms of planktonic foraminifera. It yields *Globorotalia margaritae* (recorded as *G. hirsuta*) from the base to near the top; this species has never been recorded in the overlying Piacenzian, neither at Tabiano, nor in the type section in Arda Valley. Other planktonic fossils recorded include *Globoquadrima alispira, Sphaeroidinellopsis seminulina* and *Globorotalia puncticulata*. The last species is recorded from about 50 meters from the base of the section upward. According to Barbieri and Selli (1971), the Tabianian may be subdivided into the *Globorotalia margaritae* Zone (below) and the *Globorotalia crassaformis-puncticulata* Zone (above); the latter zone extends upward to the lowest part of the Piacenzian (see above). Though Iaccarino (1967) recorded *Sphaeroidinellopsis seminulina* and *Sphaeroidinellopsis* sp. from the base of the Tabianian, the *Sphaeroidinellopsis* Acme-zone apparently is not represented there.

This argument is used critically by Crescenti (1971a and b) against the use of the Tabianian stage. Blow (1969) indicated that the Tabianian extends downward further than the Zanclean (see *op. cit.*, Figure 19), reaching down to the Zone N17/Zone N18 boundary. This indication is repeated by Cita and Blow (1969, p. 593), but it is not supported by convincing arguments.

The lowermost part of the Pliocene succession is probably missing at Tabiano, but this is not sufficient reason for rejecting the use of this stage. In fact, most of the Lower Pliocene is represented by richly fossiliferous sediments, which also include some of the planktonic foraminifera commonly used for long-range correlations.

The Zanclean (the name derives from the Latin appellation of Messina, Sicily) has never been stratotyped. It is represented essentially by the “Trubi” marl (“mare di bianchi a foraminifere” in Seguenza, 1868), a formation which has not yet been formally defined. The area of Messina is considered unsuitable for the definition of a type section (Roda, 1971). One of the most classical localities for the “Trubi” outcrops is Buonfornello, near Palermo, Sicily. A number of stratigraphically significant taxa are
recorded from this locality, including *Globorotalia margaritae* (=*G. hirsuta* in Ruggieri, 1960), *Globobuquadrina altispira*, and *Ceratolithus tricorniculatus* (Martini, 1971a).

Blow (op. cit., p. 418) states that the evolution of *Sphaeroidinella* from *Sphaeroidinellopsis* occurs 40 feet above the base of the “Trubi” in Sicily, but no precise location is given.

The Zanclean stage appears theoretically preferable to the Tabianian, but its use is hampered by the lack of definition of a type section.

From the above discussion we conclude that a convincing correlation is possible between our Pliocene reference section (Site 132) and the stratotype sections of the Pliocene stages. The correlation is illustrated in Figure 15. The terms Lower Pliocene and Upper Pliocene are here used (capitalized) in a formal sense, as synonymous of Tabianian and Placenzian respectively.

We do not use here, as we did not use in the site chapters and graphical core summaries in Part I of this volume the term “middle Pliocene,” commonly used in Italy by a group of scientists, following Ruggieri and Selli (1948).

The writer prefers not to use the more or less informal geochronological units, and wishes to avoid the acceptance of “floating boundaries.” If we have no type sections to

which reference can be made, and if we do not have a well-defined biostratigraphy, then the age determinations based on our sections will always be conflicting and confusing.

THE PROBLEM OF THE ANDALUSIAN

The Andalusian stage was proposed by Percorin at the Third Congress on Mediterranean Neogene Stratigraphy at Berne, 1964, to fill a gap existing in the succession of marine stages. The gap corresponds to the Messinian, which is mostly represented by evaporites in its type section (Selli, 1960), and is not considered suitable for long-range correlations, because of its poor fossil content.

The type area of the Andalusian stage is Andalusia, and the type section designated is at Carmona, near Sevilla. The area was an Atlantic gulf, not connected with the Mediterranean.

The stratigraphic section of Carmona includes the following units, from bottom to top: (a) blue marls; (b) “calizas toscas,” calcarenites and sands; and (c) olive-grey marls.

The fossil content of the section originally designated (Percorin, 1966), as presented at the Fourth Congress on Mediterranean Neogene Stratigraphy (Bologna, 1967) (see Percorin 1968a and b), indicates a Pliocene age for most of the section (see Verdenius 1970; see also discussion by Selli and Cipa reported in Carloni and Selli, 1971).

Later, the type section of the Andalusian was extended downward into the marls of unit 1 and the late Miocene age of these marls became more evident.

At the Fifth Congress on Mediterranean Neogene Stratigraphy (Lyon, September, 1971), Martini (1971b) demonstrated that the “caliza tosca” unit belongs to the *Ceratolithus tricorniculatus* Zone (nannofossil), but that the *Discocaster quinquemarginatus* Zone is present in Unit 1, which also includes the *D. calcaris* Zone, found in the type Tortonian. With this extended Andalusian, an overlap with the type Tortonian exists (see also Chapter 40).

The presence of a continuous, marine section straddling the Miocene/Pliocene boundary in an embayment of the Atlantic is not surprising. Bizon and Bizon (in Bizon, Bizon and Montenat, 1971) point out some “Atlantic” features observed in the foraminiferal assemblages of the Guadalquivir basin, including:

1) Occurrence in the terminal Miocene of Carmona of *Globobuquadrina altispira* in abundance. This species is never recorded in sediments of this age in the Mediterranean, though it is recorded in the Lower Pliocene there;

2) Persistence of forms of the *Globorotalia menardii* group in the Pliocene, unlike in the Mediterranean;

3) Absence, in the terminal Miocene of Andalusia, of umbilico-convex, conical *Globorotalia* as *G. mediterranea*, *G. conomiozona*, etc., which appear to be limited to the late Miocene of the Mediterranean.

Points 1 and 2 have been discussed in Chapter 40 (differences between Atlantic and Mediterranean faunas) since observations similar to those made by the Bizons on

![Figure 15. The new deep-sea Mediterranean zonation (in time-equivalent spacing) correlated with the stratotype sections of Italy.](image-url)

\[11\]Recorded in Mediterranean DSDP cores at the base of the Pliocene.
the type Andalusian versus Mediterranean faunas have been done by us for the deep-sea North Atlantic versus deep-sea Mediterranean faunas.

We have no arguments in favor of observation 3 since our limited penetration in late Miocene sediments prevented the recovery of fossiliferous sediments of early Messinan age, where the mentioned taxa are usually recorded.

The occurrence of Andalusian outcrops in the area of southern Spain facing the Mediterranean (prov. Murcia and Alicante) appears questionable. In light of the desiccation model for the origin of the late Miocene (Messinan) evaporites of the Mediterranean (see Chapter 43, this volume), it is difficult to admit in southern Spain, facing the Mediterranean, continuous marine deposition, uninterrupted from the Tortonian to the Tabianian. However, the data presented by Montenat (in Bizon, Bizon and Montenat, 1971) do not exclude gaps in sedimentation since every marine invasion would carry in faunas of a single biozone. His section across the basin of Murcia-Alicante is in good agreement with our model. In fact, evaporites occur, with increasing thickness, toward the open sea, and they are overlain by marine deposits of early Pliocene age. The Pliocene is incomplete in its lower part, and unconformably overlies brackish-water sediments (marnes a Huitres) in the internal part of the basin.

Continental deposits are also recorded in the internal outcrops. At La Alberca, near Murcia, yellow sands interbedded in the “Marnes de Torremendo” yielded a Mammalian fauna referred by Montenat and Crusafont (1970) to the Vallesian (=fauna of Pikermi). The Torremendo marls are late Miocene in age and yield Globigerinoides obliquus extremus, Globorotalia hirsuta, and others. The same situation found by De Bruijn, Sondaar and Zachariasse (1971) in Crete seems to be repeated near Murcia, some 3000 km to the west.

The above discussion indicates that the time represented by the type Andalusian, as originally defined, corresponds in part to the Messinan (Unit 1, pro parte) and in part to the Tabianian (extreme top of Unit 1, and all of Unit 2 "caliza tosca"; see Bizon, Bizon, and Montenat, 1971: Verdenius, 1970).

The outcrops of Spain that belong to the Alicante-Murcia basins show lithologic and paleontologic features significantly different from those in outcrops on the Atlantic side at Guadalquivir. Thus the Andalusian is not a suitable chronostratigraphic unit for the Mediterranean area, and the utility of introducing a new geochronological subdivision for this interval appears very doubtful inasmuch as a stage that straddles an epoch boundary is considered unsuitable.

ACKNOWLEDGMENTS

The author is indebted to Consiglio Nazionale delle Ricerche of Italy (Comitato 05) for financial support. She is grateful to Miss M. Zocchi, who is working on the statistics of the Globorotalia marginatae group, for her helpful assistance; to Walter Blow for providing topotypes of some taxa erected in 1969, including Globorotalia hirsuta praehirsuta; to Hans Boll for providing samples from the type area of Globorotalia marginatae; to Isabella Premoli and Pedro Bermudez for providing samples from the type locality of Globorotalia marginatae; to Silvia laccarino for providing samples from the stratotype Tabianian; to Raffaele Scorzetti for providing samples from the type locality of Globorotalia hirsuta praehirsuta.

The author is deeply indebted to F. Barbieri, R. Benson, W. A. Berggren, H. M. Boll and to Professor H. Hedberg for their appreciated comments and constructive criticism regarding the present report.

REFERENCES

PLATE 1

Globorotalia margaritae evoluta n. subsp. Lower Pliocene of the
Tyrrenian Basin, Globorotalia margaritae evoluta Lineage-zone,
immediately below the Globorotalia margaritae evoluta extinction
horizon. Sample: DSDP 13-132-14, CC.

Figure 1 Spiral view of the holotype; X150. A distinct
imperforate keel is visible in the three last-formed
chambers. Buttresses are limited to the early ontho-
genetic stage.

Figure 2 Spiral view of a large, flat specimen with a fairly thick
imperforate keel in the ultimate and penultimate
chambers; X150.

Figure 3 Umbilical view of a specimen with an abortive final
chamber, a rather common feature of the latest
evolutionary stages of G. margaritae. The umbilicus is
narrow and distinct; the intercameral sutures are
depressed and gently curved (almost radial), the
slit-like umbilical-extrumbilical aperture shows an
extended lip; X75.

Figure 4 Side view (opposite to the apertural face) of a large
specimen, showing a distinct imperforate keel in the
last three chambers, the smooth and highly per-
forated surface of the chamber walls in the last whorl,
and the obliterated and pitted initial whorls; X150.

Figure 5 Spiral view of a specimen with an abortive final
chamber, which shows a smoother and less perforated
wall than the preceding chambers of the last whorl;
X153.

Figure 6 Spiral view of a specimen transitional to Globorotalia
margaritae margaritae; the equatorial periphery is
slightly more elongated than in the specimens illus-
trated in Figures 1, 2, 5. The imperforate keel is
visible in the ultimate and penultimate chambers.
Buttresses are not limited to the initial whorls, but
are frequent (though smaller) also in the penultimate
chamber (see Figure 7); X153.

Figure 7 Detail of the surface of the penultimate chamber of
the specimen shown in Figure 6; X850.

All the specimens illustrated in this plate, as well as in the following
ones, are deposited in the Collection of the Laboratory of Micropaleon-
tology, University of Milano. Photographs SEM by G. Gabriele
(Institute of Geology, University of Milano).
PLATE 2

All the specimens are from Sample DSDP 13-132-14, CC.
Lower Pliocene of the Tyrrhenian Basin, *Globorotalia margaritae evoluta*
Lineage-zone

Figures 1-3 *Globorotalia margaritae primitiva* n. subsp.
1. Spiral view of a specimen showing the absence of a distinct imperforate keel, little lobulated periphery and small size of the test; X160.
2. Umbilical view of the holotype, showing the slightly lobulated, subcircular equatorial periphery, slightly depressed radial sutures, fairly large and deep umbilicus, and slit-like umbilical-extraumbilical aperture, with a thin lip; X157.
3. Apertural view of the holotype, showing the subacute periphery, slightly inflated chambers, spinovalve chamber walls; X160.

Figures 4-6 *Globorotalia margaritae margaritae* Bolli and Bermudez.

4. Spiral view of a specimen showing a rapid increase of the chamber height in the last whorl, a distinct imperforate keel in the last and penultimate chambers, and a fairly elevated, eccentric spire; X157.
5. Spiral view of a typical specimen; X165.
6. Umbilical view of a typical specimen, showing how the width of the last chamber may be greater than the equatorial diameter A—A'; X157.
PLATE 3

Globorotalia puncticulata (Deshayes). Sample DSDP 13-132-14, CC.
Lower Pliocene of the Tyrrhenian Basin, Globorotalia margaritae evoluta
Lineage-zone, immediately prior to the extinction horizon of
Globorotalia margaritae (group).

Figure 1 Spiral view of a large, typical specimen; \(\times 153 \).
Figure 2 Spiral view of a small specimen; \(\times 153 \).
Figure 3 Umbilical view, showing the large umbilical-extra-umbilical aperture, with a thin but distinct rim. The last-formed chamber has smaller pores than the preceding ones, and its surface is smoother; \(\times 165 \).
Figure 4 Side view, slightly oblique; \(\times 185 \).
Figure 5 Umbilical view of a small specimen; \(\times 135 \).
Figure 6 Side view of a small specimen, showing a highly pitted surface and wide aperture, surrounded by a distinct rim; \(\times 153 \).

1. Spiral view of a specimen with four chambers in the last whorl; the last formed chamber has an acute periphery, however no imperforate keel is visible; \(\times 135 \).

2. Spiral view of a large specimen with five chambers in the last whorl and an abortive final chamber. Subacute periphery, no peripheral keel; \(\times 120 \).

3. Spiral view of a large specimen with 4-1/2 chambers in the last whorl and subacute periphery; \(\times 120 \).

4. Umbilical view of a typical specimen, showing the fairly large umbilicus, conical shape of the chambers; depressed, radial sutures; \(\times 170 \).

5. A detail of Figure 4, showing the evenly spaced pores and pronounced buttresses. A number of coccoliths are visible, on the right; \(\times 1530 \).

6. A detail of Figure 4, showing the umbilical-extraumbilical aperture, with a faint apertural lip; \(\times 390 \).

Figure 7 *Globorotalia scitula* (Brady). Umbilical view of a right-coiling specimen, showing a smooth surface of the chambers, rare and evenly spaced pores, gently curved and depressed intercameral sutures, wide and flat umbilicus, slit-like umbilical-extraumbilical aperture, with a distinct apertural lip; \(\times 170 \). Sample: DSDP 13-132-14, CC. Lower Pliocene of the Tyrrhenian Basin. *Globorotalia margaritae evoluta* Lineage-zone.
47.1. Pliocene Biostratigraphy and Chronostratigraphy

PLATE 4

1

2

3

4

5

6

7
PLATE 5

All figures ×128. In all figures a = spiral view; b = side view; c = umbilical view. Camera lucida drawings by J. van den Linden, Utrecht.

Figure 1 (a-c) *Globorotalia crassaformis viola* Blow. Upper Pliocene, *Sphaeroidinellopsis subdehiscens* Interval-zone of the Tyrrhenian Basin. Sample: DSDP 13-132-11, CC.

Figure 2 (a-c) *Globorotalia aemiliana* Colalongo and Sartoni. Upper Pliocene, *Sphaeroidinellopsis subdehiscens* Interval-zone of the Tyrrhenian Basin. Sample: DSDP 13-132-11, CC.

PLATE 6

All specimens illustrated are from Sample DSDP 13-132-21-1, 60-62 cm. Lowermost Pliocene of the Tyrrenian Basin, *Sphaeroidinellopsis* Acme-zone. This level lies some 165 cm above the Miocene/Pliocene boundary (see Figure 2, this Chapter) and can be identified with the *Sphaeroidinella*-datum.

Figure 1 *Sphaeroidinellopsis subdehiscens* Blow. Umbilical view; X115.

Figure 2 A detail of Figure 1, showing the primary aperture with an enclosed unidentified planktonic foraminifer; X435.

Figure 3 *Sphaeroidinellopsis seminulina* (Koch). Spiral view; X185.

Figure 4 Detail of Figure 3, showing the heavily calcified cortex; X425.

Figure 5 *Sphaeroidinella dehiscens immatura* Blow; X160. Spiral view of a specimen showing incipient supplementary apertures on both sides.

Figure 6 *Sphaeroidinellopsis seminulina* (Koch). Spiral view; X160.

Figure 7 *Sphaeroidinellopsis subdehiscens* Blow. Umbilical view of a specimen with a very large primary aperture; X75.
PLATE 7

Figure 1 *Globigerinoides sacculifer* (Brady). Spiral view; X115. Sample: DSDP 13-132-14, CC. Lower Pliocene of the Tyrrhenian Basin. *Globorotalia margaritae evoluta* Lineage-zone.

Figure 2 *Globigerinoides obliquus extremus* Bolli. Umbilical view, passing to side-view; X153. Sample DSDP 13-134E-SWC1. Upper Pliocene of the Balearic Basin.

Globigerinoides obliquus extremus Interval-zone.

Figure 3 A detail of Figure 2, showing the cancellated surface, with funnel-shaped cavities and opened pores. Coccoliths are visible on the test surface; X765.

Figure 4 *Globigerinoides conglobatus* (Brady). Side view; X75. Sample: DSDP 13-134E-SWC1. Upper Pliocene of the Balearic Basin. *Globigerinoides obliquus extremus* Interval-zone.

Figure 5 A detail of Figure 4, showing thick, heavily calcified wall and well-spaced, mostly filled pores; X765.